Supplementary Materials for "Relax Image-Specific Prompt Requirement in SAM: A Single Generic Prompt for Segmenting Camouflaged Objects"

Anonymous submission

Algorithm

Algorithm 1: Algorithm of our GenSAM.

Input: Sample x_i^t from target Domain $D_t = \{x_i^t\}^{n_t}$; a image-to-caption model BLIP2, our devised spatial CLIP and segmentation model SAM and a generic task prompt P_g .

Output: Segmentation result *mask*_{iter*}.

1 for iter = 1 to Iter do

2 Feed x_i^t into BLIP2 to generate image caption C_i , transfer prompt P_g into three chains of thoughts Q_i^1 to Q_i^3 .

for j = 1 to 3 **do**

- 4 Image x_i^t , caption C_i , the *j*-th chain of thought Q_i^j are fed into BLIP2 together to get foreground and background keyword fk_i^j and bk_i^j respectively. Then fk_i^j and bk_i^j are fed into spatial CLIP to get foreground and background heatmap $F_{fk}^j(x_i^t)$ and $F_{bk}^j(x_i^t)$.
- 5 end
- 6 Heatmaps generated for foreground and background from various chains of thought are averaged respectively to get $F_{fk}(x_i^t)$ and $F_{bk}(x_i^t)$. Then, final heatmap in the *iter*-th iter is H_i . the points on H_i that are higher than threshold are selected as image-specific visual prompt to guide SAM to segment x_i^t , and get $mask_{iter}$. H_i is seen as a visual prompt to weighting on x_i in the next iteration
- 7 end
- 8 The selected iteration iter^{*} is determined by selecting the iteration's result that closely resembles the average mask across all iterations, and the final segmentation mask is $mask_{iter^*}$.

Difference between GenSAM and CIIP Surgery

CLIP surgery is a method used to generate corresponding visual results by inputting specific object names. However,

our GenSAM not only generates precise localization for the corresponding objects but also guides SAM to perform effective segmentation. Our GenSAM incorporates a k-k-v self-attention mechanism, which effectively replaces the v-v-v self-attention mechanism used in CLIP Surgery. Additionally, it utilizes foreground and background consensus methods to obtain heatmaps for foreground and background separately, instead of representing the background heatmap through the cancellation of corresponding heatmaps with empty statements. This approach results in improved localization performance.

More Visualizations of GenSAM

The visualization result of COD10K is shown in Fig. 1. For each sample, the first row shows the weighted image in each iteration, the second row shows the consensus heatmap and the third row shows the segmentation results. The red and blue points in the first and third rows respectively show the positive and negative point prompts. Furthermore, the visualization result of dataset CHAMELEON and CAMO is shown is Fig. 2.

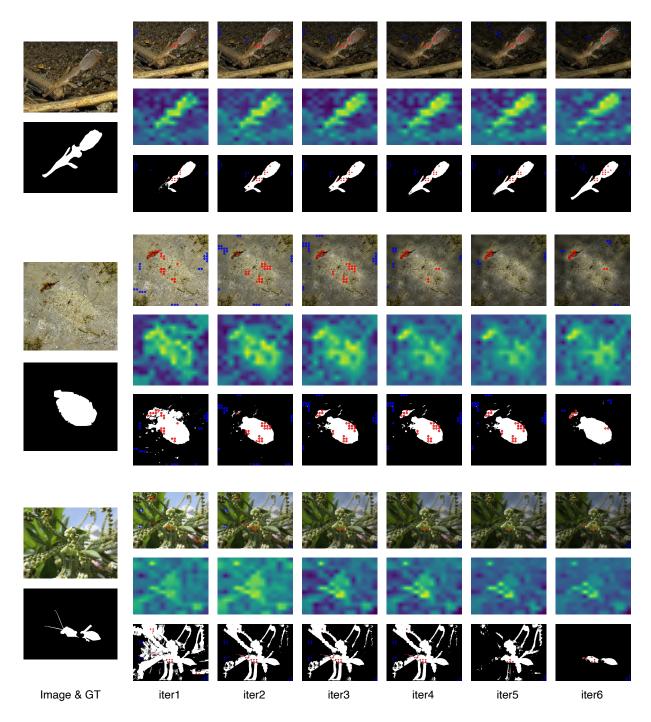


Figure 1: More visualizations on COD10K.

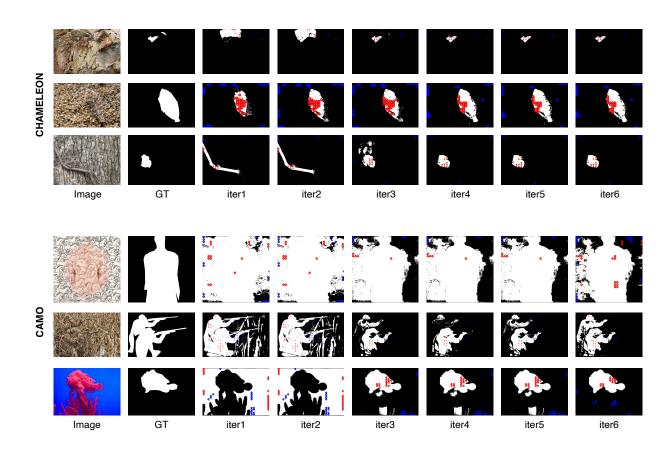


Figure 2: More visualizations on CHAMELEON and CAMO datasets.